Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Laser-induced breakdown spectroscopy for nuclear fuel material

Akaoka, Katsuaki; Miyabe, Masabumi; Otobe, Haruyoshi; Wakaida, Ikuo

Reza Kenkyu, 42(12), p.918 - 922, 2014/12

For the remote analysis of the next generation nuclear fuel material containing minor actinide (MA), Laser Induced Breakdown Spectroscopy (LIBS) was applied to uranium oxide (U$$_{3}$$O$$_{8}$$) including a small amount of neodymium oxide (Nd$$_{2}$$O$$_{3}$$) as a simulated sample of MA. By using deconvolution technique for the spectra of Nd in U, the complex, overlapped and confused spectra were separated and their actual intensities were determined. As a result, the calibration curve with good linearity and the detection limit of less than 700 ppm were demonstrated.

Journal Articles

High-sensitive detection by direct interrogation of 14 MeV Acc neutrons, 1; Uranium-contained metal matrix in a waste dram

Haruyama, Mitsuo; Takase, Misao*; Tobita, Hiroshi; Mori, Takamasa

Nihon Genshiryoku Gakkai Wabun Rombunshi, 3(2), p.185 - 192, 2004/06

no abstracts in English

JAEA Reports

Development of measuring device for inner surfaces of embedded piping (Contract research)

Ito, Hirokuni*; Hatakeyama, Mutsuo*; Tachibana, Mitsuo; Yanagihara, Satoshi

JAERI-Tech 2003-012, 34 Pages, 2003/03

JAERI-Tech-2003-012.pdf:2.87MB

The MISE was developed to evaluate low-level radiological contaminations of inner surfaces of piping. The MISE consists of a cylindrically-formed double layered type detector and a piping crawling robot, which were designed and manufactured separately. In measurements of the contaminations, an outer cylindrical detector close to the surface of piping measures $$beta$$-rays and $$gamma$$-rays and an inner cylindrical detector set after a shielding plate for shield of $$beta$$-rays measures $$gamma$$-rays. The $$beta$$-ray counting rates are derived by subtracting $$gamma$$-ray counts measured by the inner detector from $$gamma$$- and $$beta$$-ray counts measured by the outer detector. The robot transports the double layered type detector with observing inner surfaces of piping. The detection limit for the contamination of $$^{60}$$Co was found to be about 0.17Bq/cm$$^{2}$$ with measurement time of 30 seconds. It is expected that 0.2Bq/cm$$^{2}$$ corresponding to clearance level of $$^{60}$$Co (0.4Bq/g) can be evaluated with measurement time of 2 seconds, which is equal to measurement speed of 54m/h.

JAEA Reports

Measurement of technetium emission lines by inductively coupled plasma emission spectrometry

Watanabe, Kazuo;

JAERI-Research 95-066, 49 Pages, 1995/10

JAERI-Research-95-066.pdf:0.98MB

no abstracts in English

JAEA Reports

5 (Records 1-5 displayed on this page)
  • 1